The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations

نویسندگان

  • A. J. Wade
  • D. Butterfield
چکیده

A new model has been developed for assessing the effects of multiple sources of phosphorus on the water quality and aquatic ecology in heterogeneous river systems. The Integrated Catchments model for Phosphorus (INCA-P) is a process-based, mass balance model that simulates the phosphorus dynamics in both the plant/soil system and the stream. The model simulates the spatial variations in phosphorus export from different land use types within a river system using a semi-distributed representation, thereby accounting for the impacts of different land management practices, such as organic and inorganic fertiliser and wastewater applications. The land phase of INCA-P includes a simplified representation of direct runoff, soilwater and groundwater flows, and the soil processes that involve phosphorus. In addition, the model includes a multi-reach in-stream component that routes water down the main river channel. It simulates Organic and Inorganic Phosphorus concentrations in the land phase, and Total Phosphorus (dissolved plus particulate phosphorus) concentrations in the in-stream phase. Instream Soluble Reactive Phosphorus concentrations are determined from the Total Phosphorus concentrations and the macrophyte, epiphyte and algal biomasses are simulated also. This paper describes the model structure and equations, the limitations and the potential utility of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nitrogen model for European catchments: INCA, new model structure and equations

A new version of the Integrated Nitrogen in Catchments model (INCA) was developed and tested using flow and streamwater nitrate concentration data collected from the River Kennet during 1998. INCA is a process-based model of the nitrogen cycle in the plant/soil and instream systems. The model simulates the nitrogen export from different land-use types within a river system, and the in-stream ni...

متن کامل

INCA : summary and conclusions

This contribution brings to a close a special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). The wide range of issues involved in relation to hydrology and within-catchment processes, scale (from small catchments to maj...

متن کامل

The prediction and management of aquatic nitrogen pollution across Europe: an introduction to the INCA project

Excess nitrogen in soils, fresh water, estuarine and marine systems contributes to nutrient enrichment in key ecosystems throughout Europe, often leading to detrimental environmental impacts, such as soil acidification or the eutrophication of water bodies. The Integrated Nitrogen model for European Catchments (INCA) project aims to develop a generic version of the Integrated Nitrogen in Catchm...

متن کامل

Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model

The INCA (Integrated Nitrogen in Catchments) model was applied to the River Tweed in the Scottish Borders, a large-scale (4400km2), spatially heterogeneous catchment, draining a wide range of agricultural land-use types, and which contributes approximately 20% of UK river flows to the North Sea. The model was calibrated for the first four years’ data record (1994 to 1997) and tested over the fo...

متن کامل

Modelling phosphorus dynamics in multi-branch river systems: a study of the Black River, Lake Simcoe, Ontario, Canada.

High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002